I just had a random thought: a common pattern in Rust is to things such as:
let vec_a: Vec<String> = /* ... */;
let vec_b: Vec<String> = vec_a.into_iter().filter(some_filter).collect();
Usually, we need to be aware of the fact that Iterator::collect()
allocates for the container we are collecting into. But in the snippet above, we've consumed a container of the same type. And since Rust has full ownership of the vector, in theory the memory allocated by vec_a
could be reused to store the collected results of vec_b
, meaning everything could be done in-place and no additional allocation is necessary.
It's a highly specific optimization though, so I wonder if such a thing has been implemented in the Rust compiler. Anybody who has an idea about this?
I mean, the actual operation is just an example, of course. Feel free to make it a
.map()
operation instead. The strings couldn’t be reused then, but the vector’s allocation still could… in theory.map()
can still be used withVec::iter_mut()
,filter_map()
can be replaced withVec::retain_mut()
.Yeah, that's helpful if I would be currently optimizing a hot loop now. But I was really just using it as an example. Also,
retain_mut()
doesn't compose as well.I'd much rather write:
Over:
And it would be nice if that would be optimized the same. After all, the point of Rust's iterators is to provide zero-cost abstractions. In my opinion, functions like
retain_mut()
represent a leakiness to that abstraction, because the alternative turns out to not be zero cost.To be fair, these alternatives are also limited to the case where the item type stays the same.