88
How dependent is France on Niger's uranium?
(www.lemonde.fr)
News/Interesting Stories/Beautiful Pictures from Europe ๐ช๐บ
(Current banner: Thunder mountain, Germany, ๐ฉ๐ช ) Feel free to post submissions for banner pictures
(This list is obviously incomplete, but it will get expanded when necessary)
Also check out !yurop@lemm.ee
@Pampa @AlexisFR @Wirrvogel @Ardubal @Sodis
So
One #nuclear power station will buy about a million #electric cars. Most #EVs have a 300km range but most days go <30km.
So the mean available #energy capacity of all these cars would run the #UK for 24 hours using #V2G (Vehicle to grid)
This could be a massive #car share scheme with a couple of EVs on every street.
Or #electricbuses
All the energy could come from #wind or #solar and the #battery fills the gaps when there is no wind.
@MattMastodon @Pampa @AlexisFR @Wirrvogel @Sodis
A few points to factor in:
- A nuclear power station has a much longer lifetime than batteries, solar panels, and wind turbines.
- You need not only the batteries, but also the panels/turbines to fill them.
- Conversion and storage losses are significant. Attached is a rough overview for Hโ.
- Transmission infrastructure costs to/from individual cars are significant.
- 24 h is not enough by far to balance out usual fluctuations.
@MattMastodon @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
Batteries are great for short term storage (Hours to Days), but the further you are from the equator, the more you need seasonal storage.
Hydrogen possibly fits part of that, if it is produced by electrolysis when wind / solar are in surplus.
Problems are:
how to store it, it leaks through most storage containers, requires vast amounts of energy to liquify and
The round trip from Electricity via H2 to Electricity is very inefficient.
@MattMastodon @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis
A thought,
I wouldn't completely write methane, LPG , or any other petrochemical, off yet, as a seasonal storage medium.
They are a lot easier to store and transport than H2.
They can be produced from green H2 + captured CO2
https://en.wikipedia.org/wiki/Methanation
We have a lot of existing infrastructure which can use them.
That is of course If we can produce enough surplus Solar / Wind to make them.
https://www.power-technology.com/features/eth-zurich-fuel-air-and-sunlight/
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis There seems to be a lot of uncertainty around the cost of green hydrogen. The first three Google links differ wildly on it.
Natural gas has certainly increased the cost of grey hydrogen lately.
If the problem is the cost of electricity, that's easily solved by producing mainly when there's a surplus of green electricity. However, if the cost is the capital outlay, that's harder. Which is it?
Of course, we can and must require by law that all new capacity be green. Current incentives also include blue, but there is more green hydrogen actually being built.
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis The problem with using it for long term electricity storage is leaks, of course. It's a weak greenhouse gas (sort of).
https://www.theguardian.com/environment/2022/jun/17/pollutionwatch-hydrogen-power-climate-leaks
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis IIRC most studies show that long term storage is only a few percent of total energy, certainly well under 10%. So it is a viable option - if you can get past leaks, and other problems (e.g. the temptation to burn it, producing NOx pollution). And can store vast amounts of energy relatively cheaply.
Nuclear is of course a viable option. There are a few others e.g. iron-air batteries, or just building a lot more renewables than we need. Long range interconnectors help. Lithium is only helpful for short to medium term storage.
Re synthetic fuels, so far extremely expensive and limited scale. Might possibly be used for aviation in the long run (but it's easier just to fly less, and we still need a reliable, safe solution to the contrails problem). Maybe shipping too (possibly as ammonia).
@MattMastodon @BrianSmith950 @Ardubal @Pampa @AlexisFR @Wirrvogel @Sodis Here's a study from a while back about how much storage is actually needed, using the example of Australia. You can get to ~98% with relatively little storage. For the remaining 2%, you need to think about more difficult options - demand side measures, nuclear, long term storage, etc.
https://reneweconomy.com.au/a-near-100-per-cent-renewables-grid-is-well-within-reach-and-with-little-storage/
That's exactly what it is. Hydrogen power plants are just trojan horses for methane. Since they can burn one as well as the other, but CH4 is much more economically convenient.