(For context, I'm basically referring to Python 3.12 "multiprocessing.Pool Vs. concurrent.futures.ThreadPoolExecutor"...)
Today I read that multiple cores (parallelism) help in CPU bound operations. Meanwhile, multiple threads (concurrency) is due when the tasks are I/O bound.
Is this correct? Anyone cares to elaborate for me?
At least from a theorethical standpoint. Of course, many real work has a mix of both, and I'd better start with profiling where the bottlenecks really are.
If serves of anything having a concrete "algorithm". Let's say, I have a function that applies a map-reduce strategy reading data chunks from a file on disk, and I'm computing some averages from these data, and saving to a new file.
On Linux, by default they're not. getcpu(2) says:
Thank you. That's good to know. In my OS architecture lectures, we were introduced to an OS with core bound threads. I can't remember if it was a learning OS or something that really existed, hence my doubts.
Anti Commercial-AI license