this post was submitted on 19 Jun 2025
28 points (96.7% liked)

Technology

1157 readers
53 users here now

A tech news sub for communists

founded 3 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] yogthos@lemmygrad.ml 1 points 2 weeks ago (1 children)

I've found DeepSeek works pretty well for translating content, their API access is pretty cheap. The main limitation comes from the context size, smaller models can handle less text, so you'd have to feed it content in smaller chunks. That said, locally running models are pretty capable of doing these types of translations.

Here's an example node script you could use to call DeepSeek to translate a document:

const fs = require('fs');
const axios = require('axios');

async function translateFile(filePath) {
    try {
        // Check if API key is set
        if (!process.env.DEEPSEEK_API_KEY) {
            throw new Error('DEEPSEEK_API_KEY environment variable is not set');
        }

        // Read the file content
        const content = fs.readFileSync(filePath, 'utf8');
        
        // Call Deepseek API for translation using chat completion
        const response = await axios.post(
            'https://api.deepseek.com/v1/chat/completions',
            {
                model: "deepseek-chat",
                messages: [
                    {
                        role: "system",
                        content: "You are a professional translator. Translate the following text to English while preserving formatting and meaning."
                    },
                    {
                        role: "user",
                        content: content
                    }
                ],
                temperature: 0.3
            },
            {
                headers: {
                    'Authorization': `Bearer ${process.env.DEEPSEEK_API_KEY}`,
                    'Content-Type': 'application/json'
                }
            }
        );

        return response.data.choices[0].message.content;
    } catch (error) {
        console.error('Translation failed:', error.message);
        process.exit(1);
    }
}

// Usage: node src/index.js <input-file> <output-file>
async function main() {
    if (process.argv.length < 4) {
        console.log('Usage: node src/index.js <input-file> <output-file>');
        process.exit(1);
    }

    const inputFile = process.argv[2];
    const outputFile = process.argv[3];
    const translatedText = await translateFile(inputFile);
    
    fs.writeFileSync(outputFile, translatedText);
    console.log(`Translation saved to ${outputFile}`);
}

main();

Similarly, if you wanted to use a model like qwen3 with ollama for translations, you could do something like this:

const fs = require('fs');
const axios = require('axios');

async function translateText(text) {
    try {
        const response = await axios.post('http://localhost:11434/api/generate', {
            model: 'qwen3:32b',
            prompt: `Translate the following text to English:\n\n${text}`,
            stream: false,
            options: {
                num_ctx: 16384,  // Larger context window
                temperature: 0.3,  // More deterministic output
                top_k: 40,       // Balance between quality and speed
                top_p: 0.9        // Controls diversity of output
            }
        });
        return response.data.response;
    } catch (error) {
        console.error('Translation error:', error);
        throw error;
    }
}

async function translateFile(inputPath, outputPath) {
    try {
        // Read input file
        const inputText = fs.readFileSync(inputPath, 'utf8');
        
        // Translate text
        const translatedText = await translateText(inputText);
        
        // Write output file
        fs.writeFileSync(outputPath, translatedText);
        console.log(`Translation complete. Output written to ${outputPath}`);
    } catch (error) {
        console.error('File processing error:', error);
    }
}

// Usage: node src/index.js input.txt output.txt
if (process.argv.length >= 4) {
    const inputFile = process.argv[2];
    const outputFile = process.argv[3];
    translateFile(inputFile, outputFile);
} else {
    console.log('Usage: node src/index.js <input-file> <output-file>');
}