34
π - 2023 DAY 5 SOLUTIONS -π
(programming.dev)
An unofficial home for the advent of code community on programming.dev!
Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.
Solution Threads
M | T | W | T | F | S | S |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 |
Icon base by Lorc under CC BY 3.0 with modifications to add a gradient
console.log('Hello World')
Like many others, I really didn't enjoy this one. I particularly struggled with part 02, which ended up with me just brute forcing it and checking each seed. On my system it took over 15 minutes to run, which is truly awful. I'm open to pointers on how I could better have solved part two.
Solution in Rust π¦
Formatted Solution on GitLab
Code
I got far enough to realize that you probably needed to work backwards and given a location, determine the accompanying seed, and then check if that seed is one of the ones listed in the range. Still though, starting at 0 for location and working up was taking forever to find the first valid seed
Someone in this thread pointed out that if you picked the first value of each range in the map, working backwards from those points will get you a short list of seeds which map to low values. You then check if those seeds are valid, and also check the location of the first seeds in the range (the rest of the seeds in the range don't matter because those are covered by the first check). This ends up with about 200 locations which you can sort, to get the lowest value.
I tried brute forcing it but couldn't get the process to finish. Iterating through hundreds of millions of seeds is no bueno.
After reading your comment though I got the idea to map whole seed ranges instead of individual seeds. That finished in no time of course.