230
What's with all these hip filesystems and how are they different?
(lm.paradisus.day)
From Wikipedia, the free encyclopedia
Linux is a family of open source Unix-like operating systems based on the Linux kernel, an operating system kernel first released on September 17, 1991 by Linus Torvalds. Linux is typically packaged in a Linux distribution (or distro for short).
Distributions include the Linux kernel and supporting system software and libraries, many of which are provided by the GNU Project. Many Linux distributions use the word "Linux" in their name, but the Free Software Foundation uses the name GNU/Linux to emphasize the importance of GNU software, causing some controversy.
Community icon by Alpár-Etele Méder, licensed under CC BY 3.0
Perhaps I'm guilty of good luck, but is the trade off of performance for reliability worth it? How often is reliability a problem?
As a different use case altogether, suppose I was setting up a NAS over a couple drives. Does choosing something with COW have anything to do with redundancy?
Maybe my question is, are there applications where zfs/btrfs is more or less appropriate than ext4 or even FAT?
For fileservers ZFS (and by extension btrfs) have a clear advantage. The main thing is, that you can relatively easily extend and section off storage pools. For ext4 you would need LVM to somewhat achieve something similar, but it's still not as mighty as what ZFS (and btrfs) offer out of the box.
ZFS also has a lot of caching strategies specifically optimized for storage boxes. Means: it will eat your RAM, but become pretty fast. That's not a trade-off you want on a desktop (or a multi purpose server), since you typically also need RAM for applications running. But on a NAS, that is completely fine. AFAIK TrueNAS defaults to ZFS. Synology uses btrfs by default. Proxmox runs on ZFS.
ZFS cache will mark itself as such, so if the kernel needs more RAM for applications it can just dump some of the ZFS cache and use whatever it needs.
I see lots of threads on homelab where new users are like “HELP MY ZFS IS USING 100% MEMORY” and we have to talk them off that ledge: unused RAM is wasted RAM, ZFS is making sure you’re running fast AF.
In theory. Practically unless I limit the max ARC size, processes get OOM killed quite frequently here.
In theory. But how it is implemented in current systems, reserved memory can not be used by other processes and those other processes can not just ask the hog to give some space. Eventually, the hog gets OOM-killed or the system freezes.
Even when, as the comment says, the memory is marked as cache?
Windows doesn't have this problem
Neither of them likes to deal with very low amounts of free space, so don't use it on places where that is often a scarcity. ZFS gets really slow when free space is almost none, and nowadays I don't know about BTRFS but a few years ago filling the partition caused data corruption there.