Germany is struggling to get people on-board with a green energy movement that involves banning high footprint domestic heating systems (e.g. gas boilers)-- thus forcing people to migrate to heat pumps. A low-income family who was interviewed said it would cost €45k to install a heat pump in their terraced home in Bremen.
That price tag sounds unreal. I am baffled. What’s going on here? I guess I would assume an old terraced German home would likely have wall radiators that circulate hot water. Is the problem that a heat pump can’t generate enough heat to bring water to ~60°C, which would then force them to add a forced-air ducting infrastructure? Any guesses?
(note the link goes to a BBC program that looks unrelated, but at the end of the show they switch to this issue in Germany. I’m not sure if that show is accessible.. I see no download link but that could be a browser issue)
Thanks for the feedback.
My boiler gives me control of the temp of the water running through the radiators which is independent of the room air temp thermostat. I set the water to ~55°C which seems to reasonably get the air to 17° without running continuously. I mentioned 60° because I figured that temp would enable someone to heat their room up quickly. I wonder why you say a heat pump would not need 60°. I would think the radiators need to reach a high temp like ~50—60° regardless of the kind of furnace. Maybe I’m doing something inefficient. Should I use a lower temp? I could lower the water temp but then there would be a point where the furnace has to run continuously which i would think is inefficient. I’m not sure how to find the efficiency sweet spot.
UPDATE
Sounds reasonable. So if the demand has out-stripped supply on heat pumps, I wonder if geo-thermal would actually be cheaper than a heat pump ATM. IIRC the digging would be ~€10k (what I think is a typical price for digging a well.. could be off). Though I don’t suppose you could use wall radiators with geothermal. Since geothermal water is only ~6° warmer in the winter, hydro-radiant flooring would have to be installed.
Running continuously is usually the ideal point. For heat pumps, it definitely is as the efficiency is highest with the lowest split between indoor and outdoor temps.
The issue is that if you suddenly want more heat, you first have to raise the water loop temperature before that can start pushing more heat into the house.
Systems are usually designed to keep up at perhaps 22-24C even on the worst days of winter; maintaining 17C is a lower target that can be met with less capacity and cooler radiators.