view the rest of the comments
Technology
This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.
Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.
Rules:
1: All Lemmy rules apply
2: Do not post low effort posts
3: NEVER post naziped*gore stuff
4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.
5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)
6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist
7: crypto related posts, unless essential, are disallowed
The article doesn’t really go into it but what’s a typical yield for chips like that? That’s great they’re on a smaller dye but if you’re trashing half of them it seems you’re not quite there yet.
It seems pretty poor, especially for 2023. This article from four years ago has TSMC touting an 80% yield rate on their new-at-the-time 5nm process. Still, the fact that Huawei is able to produce 7nm parts at all is something of a victory. Huawei is probably around five years behind TSMC at this point but may be able to close that gap over time.
That's based on TSMC's own test chip not an actual customer's. 17.92 mm² is incredibly tiny when SoCs, CPUs and GPUs range in size from 100 to 600 mm² increasing the proportion of chips with defects as the number of chips on the wafer drops.
From that very article
As TSMC themselves designed the chip, they definitely followed all their design rules for that process to maximize yield. No customer would do that.
Anand explains this in one of his articles.
If you're trashing half of them, that's just means fabrication is more expensive. This seems to be an acceptable cost for Huawei, and I imagine SMIC will get subsidies to offset the cost in the short term. The important part is that SMIC can now produce commercially viable 7nm chips domestically, and they're only going to get better at doing it going forward.