this post was submitted on 28 Apr 2024
9 points (90.9% liked)

Ask Math Problems

86 readers
1 users here now

founded 10 months ago
MODERATORS
 

Are there any known right triangles that have integer side lengths and rational angles? If not, has it been proven that none exist?

top 5 comments
sorted by: hot top controversial new old
[–] lurker2718 3 points 8 months ago

I bit late but i i think it is proven there is no solutions, except for the special case 0° and side lengths 1, 1 and 0. Let us consider the triangle with a²+b²=c² and a = c sin(pi q) where q is the angle as a fraction of half a circle. So you are looking for a solution where a, b, c are integer and q is rational. So we first need to find a rational value for q where sin(pi q) is rational. According to https://math.stackexchange.com/questions/87756/when-is-sinx-rational#87768 this happens only for the well known case of 30°, so q=1/6 and a/c=1/2. However, in this case b=c/2 × sqrt(3) which is irrational, so with this angle we can never create integer side length.

[–] xigoi@lemmy.sdf.org 3 points 8 months ago (1 children)

Do you mean rational in radians, or in degrees?

I was thinking of degrees, or fractions of a whole (2π radians), though either would be interesting. I would be quite surprised if any such triangles existed with rational angles in radians, given that π is irrational.

[–] ns1@feddit.uk 2 points 8 months ago (1 children)