9
submitted 6 months ago by threelonmusketeers@sh.itjust.works to c/askmath

Are there any known right triangles that have integer side lengths and rational angles? If not, has it been proven that none exist?

top 5 comments
sorted by: hot top controversial new old
[-] lurker2718 3 points 6 months ago

I bit late but i i think it is proven there is no solutions, except for the special case 0° and side lengths 1, 1 and 0. Let us consider the triangle with a²+b²=c² and a = c sin(pi q) where q is the angle as a fraction of half a circle. So you are looking for a solution where a, b, c are integer and q is rational. So we first need to find a rational value for q where sin(pi q) is rational. According to https://math.stackexchange.com/questions/87756/when-is-sinx-rational#87768 this happens only for the well known case of 30°, so q=1/6 and a/c=1/2. However, in this case b=c/2 × sqrt(3) which is irrational, so with this angle we can never create integer side length.

[-] xigoi@lemmy.sdf.org 3 points 6 months ago

Do you mean rational in radians, or in degrees?

[-] threelonmusketeers@sh.itjust.works 4 points 6 months ago

I was thinking of degrees, or fractions of a whole (2π radians), though either would be interesting. I would be quite surprised if any such triangles existed with rational angles in radians, given that π is irrational.

[-] ns1@feddit.uk 2 points 6 months ago
this post was submitted on 28 Apr 2024
9 points (90.9% liked)

Ask Math Problems

82 readers
1 users here now

founded 8 months ago
MODERATORS