I would draw your attention to the difference between mathematics and reality. Although mathematics is extremely useful in modeling reality, it's important to remember that while all models are wrong, some are nonetheless useful.
Thus, a household gardener or storage tank owner or a builder of small boats can choose the appropriate diameter of hose, tank, or pontoon very effectively by rounding PI to 3 but cannot do so when "rounding" to 1 or 5. In these cases, it literally doesn't matter how many decimal points you use, because the difference between 3 and any arbitrary decimal expansion of PI will be too small to have concrete meaning in actual use.
Under the philosophy you are promoting, it would be impossible to act in the physical world whenever it throws an irrational number at us.
I don't know, but I suspect that there is a whole branch of mathematics, engineering, or philosophy that describes what kinds of simplifications and rounding are acceptable when choosing to act in the physical world.
The real world in which we act has a fuzziness about it. I think it's better to embrace it and find ways to work with that than to argue problems that literally have no numerical solution, at least when those arguments would have the effect of making it impossible to act.
I get it now. I was taking exception to your characterization of 3 and 5 being equally inaccurate in the sense of how close they are to the actual true value, which, of course, can never be known, except in every more accurate approximations.
In that case, I guess we still have a difference of opinion. I think that using approximations that are closer to their true value are more useful in teaching, despite (and maybe because of) the greater difficulty. If the student is not yet ready for that level of difficulty, then perhaps a different problem should be presented.
To that end, I actually think that there are several things to teach. That PI is not 3 or 3.14 or any other decimal expansion. That 3 is close enough for most casual encounters outside school. That 3.14 is close enough for most engineering work. That 3.1416 is close enough for most scientific work. That 15 decimal places is close enough for rocket scientists. That 37 decimal places are enough to calculate the circumference of the universe to within the diameter of a hydrogen atom. (https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/ is my reference for the last two items. The others are just wild-ass guesses.)