149
Today's Large Language Models are Essentially BS Machines
(quandyfactory.com)
A nice place to discuss rumors, happenings, innovations, and challenges in the technology sphere. We also welcome discussions on the intersections of technology and society. If it’s technological news or discussion of technology, it probably belongs here.
Remember the overriding ethos on Beehaw: Be(e) Nice. Each user you encounter here is a person, and should be treated with kindness (even if they’re wrong, or use a Linux distro you don’t like). Personal attacks will not be tolerated.
Subcommunities on Beehaw:
This community's icon was made by Aaron Schneider, under the CC-BY-NC-SA 4.0 license.
And everyone in tech who has worked on ML before collectively says "yeah that's what we've been trying to tell you". Don't get me wrong, LLMs are a huge leap, but god did it show how greedy corporations are, just immediately jumping to "how quick can we lay people off?". The tech is not to that spec. Yet. It will get there, but goddamn do we need to be demanding some regulations now
I was mostly posting this because the last time LLMs came up, people kept on going on and on about how much their thoughts are like ours and how they know so much information. But as this article makes clear, they have no thoughts and know no information.
In many ways they are simply a mathematical party trick; formulas trained on so much language, they can produce language themselves. But there is no “there” there.
Sadly we don't even know what "knowing" is, considering human memory changes every time it is accessed. We might just need language and language only. Right now they're testing if generating verbalized trains of thought helps (it might?). The question might change to: Does the sum total of human language have enough consistency to produce behavior we might call consciousness? Can we brute force the Chinese room with enough data?