26
Some Thoughts on Coupling
(www.pragmaticcoding.ca)
Welcome to the main community in programming.dev! Feel free to post anything relating to programming here!
Cross posting is strongly encouraged in the instance. If you feel your post or another person's post makes sense in another community cross post into it.
Hope you enjoy the instance!
Rules
Follow the wormhole through a path of communities !webdev@programming.dev
I can relate to this, having developed a coupled socio-emissions-carbon-climate model, which evolved for 20 years in java, until recently converted to scala3. You can have a look here. The problem is that "coupling" in such models of complex systems is a 'good' thing, as there are feedbacks - for example atmospheric co2 drives climate warming but the latter also changes the carbon cycle, demography drives economic growth but the latter influences fertility and migration, etc.. (some feedbacks are solved by extrapolating from the previous timestep - the delay is anyway realistic). There are also policy feedbacks - between top-down climate-stabilisation goals, and bottom up trends and national policies, the choice affects the logical calculation order. All this has to work fast within the browser (now scala.js - originally java applet), responding interactively to parameter adjustments, only recalculating curves which changed - getting all these interactions right is hard.
If restarting in scala3 I'd structure it differently, but having a lot of legacy science code known to work, it’s hard to pull it apart. Wish I'd known such principles at the beginning, but as it grew gradually, one doesn't anticipate such complexity.
That looks cool, but I have no idea what it does.
Anticipating complexity is a critical core concept that isn't taught in school either. Nothing of value ever stays simple. Unfortunately, it takes years of experience before you figure that out.
Hi, excuse me for replying so late, but i've been away from lemmy for.a while. Well, to summarise, the model calculates the future trajectories, of population, economy, emissions, atmospheric gases, and climate response etc., according to a set of (hundreds of) diverse options and uncertainties which you can adjust - the key feature is that the change shows rapidly enough to let you follow cause -> effect, to understand how the system responds in a quasi-mechanical way.
Indeed you are right, complexity is beautiful, but hard. A challenge with such tools is to adjust gradually from simple to complex. Although SWIM has four complexity levels, they are no longer systematically implemented - also what seems simple or complex varies depending where each person is coming from, so i think to adapt the complexity filter into a topic-focus filter. Much todo ...