This article describes a new study using AI to identify sex differences in the brain with over 90% accuracy.
Key findings:
- An AI model successfully distinguished between male and female brains based on scans, suggesting inherent sex-based brain variations.
- The model focused on specific brain networks like the default mode, striatum, and limbic networks, potentially linked to cognitive functions and behaviors.
- These findings could lead to personalized medicine approaches by considering sex differences in developing treatments for brain disorders.
Additional points:
- The study may help settle a long-standing debate about the existence of reliable sex differences in the brain.
- Previous research failed to find consistent brain indicators of sex.
- Researchers emphasize that the study doesn't explain the cause of these differences.
- The research team plans to make the AI model publicly available for further research on brain-behavior connections.
Overall, the study highlights the potential of AI in uncovering previously undetectable brain differences with potential implications for personalized medicine.
I don't doubt that there are inherent differences between the brains of most men and women, but "we can measure these differences" and "these differences are inherent" are two different claims. I don't really get what the article is trying to get at by first claiming the latter and then walking back to the former.
~~btw can someone post the full PDF I can't access it via sci-hub yet~~
Edit: Also a tangential nitpick, but looking at their code I can tell that they're psychiatrists/neuroscientists first and programmers second lol
"CNN Block 1" comment used twice?
They skip layer 5? (Why even keep it in there??)
A linear layer with 2 outputs??? And then they do "
_, predicted = torch.max(outputs.data, 1)
" in the training script???? JUST USE 1 OUTPUT WITH A SIGMOID I'M BEGGING YOUAnd there's a lot going on in the "utilityFunctions.py" file lol
Good God that utility file.
For the record, I've earned some serious cash essentially chasing around data scientists and whipping their code into production readiness and deployability. So, carry on I guess. I've literally seen code like this that a company relies on, that runs one one dudes laptop (but he's a PhD and the brainz of the product! Lol)
I would guess clickbait
More like a proof of concept, since they didn't significantly improve upon the accuracy of their predictions compared to prior models.