view the rest of the comments
Ask Science
Ask a science question, get a science answer.
Community Rules
Rule 1: Be respectful and inclusive.
Treat others with respect, and maintain a positive atmosphere.
Rule 2: No harassment, hate speech, bigotry, or trolling.
Avoid any form of harassment, hate speech, bigotry, or offensive behavior.
Rule 3: Engage in constructive discussions.
Contribute to meaningful and constructive discussions that enhance scientific understanding.
Rule 4: No AI-generated answers.
Strictly prohibit the use of AI-generated answers. Providing answers generated by AI systems is not allowed and may result in a ban.
Rule 5: Follow guidelines and moderators' instructions.
Adhere to community guidelines and comply with instructions given by moderators.
Rule 6: Use appropriate language and tone.
Communicate using suitable language and maintain a professional and respectful tone.
Rule 7: Report violations.
Report any violations of the community rules to the moderators for appropriate action.
Rule 8: Foster a continuous learning environment.
Encourage a continuous learning environment where members can share knowledge and engage in scientific discussions.
Rule 9: Source required for answers.
Provide credible sources for answers. Failure to include a source may result in the removal of the answer to ensure information reliability.
By adhering to these rules, we create a welcoming and informative environment where science-related questions receive accurate and credible answers. Thank you for your cooperation in making the Ask Science community a valuable resource for scientific knowledge.
We retain the discretion to modify the rules as we deem necessary.
Someone's already given an answer for a non-illuminated structure, but the necessary brightness of a light to be visible is also an interesting question.
We'll assume the light is located on the dark portion of the Moon. From experience, the dimmest stars clearly visible with the naked eye when right next to the Moon are around magnitude 1, which is about 3.6x10^9 photons/sec/m^2.
If we focus the light on the near hemisphere of the Earth (which has an area of 2.5x10^14 m^2) we need to produce 9x10^23 photons/sec. A green photon has an energy of around 3.7x10^-19 joules, so the total power output is 9x10^23 x 3.7x10^-19 = 333 kW.
For reference, this is roughly comparable to the wattage of the fastest electric car chargers. It's a lot of power, but well within the capability of a small lunar solar farm.