108
submitted 1 year ago by JRepin@lemmy.ml to c/technology@lemmy.ml

cross-posted from: https://lemmy.ml/post/2811405

"We view this moment of hype around generative AI as dangerous. There is a pack mentality in rushing to invest in these tools, while overlooking the fact that they threaten workers and impact consumers by creating lesser quality products and allowing more erroneous outputs. For example, earlier this year America’s National Eating Disorders Association fired helpline workers and attempted to replace them with a chatbot. The bot was then shut down after its responses actively encouraged disordered eating behaviors. "

top 50 comments
sorted by: hot top controversial new old
[-] mojo@lemm.ee 32 points 1 year ago

The real issue is people need to realize how LLMs work. It's just a really good next word generator that sounds plausible to a human. Accuracy and truth isn't part of consideration for the most part. The AI doesn't even see words, it just breaks words down to numbers and treats it like a giant math problem.

It's an amazing tool that will massively boost productivity, but people need to know its limitations and what it's actually capable of. That's where the hype is overblown.

[-] Tgs91@lemmy.world 24 points 1 year ago

I work on AI research. I've been trying to explain it to people as an improv actor that takes suggestions from the audience. It just plays along with the prompt you give it. It's not an expert, it's just an actor playing a role.

[-] FaceDeer@kbin.social 3 points 1 year ago

Ironically, I think you also are overlooking some details about how LLMs work. They are not just word generators. Stuff is going on inside those neural networks that we're still unsure of.

For example, I read about a study a little while back that was testing the mathematical abilities of LLMs. The researchers would give them simple math problems like "2+2=" and the LLM would fill in 4, which was unsurprising because that equation could be found in the LLM's training data. But as they went to higher numbers the LLM kept giving mostly correct results, even when they knew for a fact that the specific math problem being presented wasn't in the training data. After training on enough simple addition problems the LLM had actually "figured out" some of the underlying rules of math and was using those to make its predictions.

Being overly dismissive of this technology is as fallacious as overly hyping it.

[-] Norgur@kbin.social 16 points 1 year ago

No. Just.... No. The LLM has not "figured out" what's going on. It can't. These things are just good at prediction. The main indicator is in your text: "mostly correct". A computer that knows what to calculate will not be "mostly correct". One false answer proves one hundred percent that it has no clue what it's supposed to do.
What we are seeing with those "studies" is that social study people try to apply the same rules they apply to humans (where "mostly correct" is as good as "always correct") which is bonkers, or behavioral researchers try to prove some behavior they attribute to the AI as if it was a living being, which is also bonkers because the AI will mimic the results in the training data which is human so the data will be biased as fuck and its impossible to determine if the AI did anything by itself at all (which it didn't, because that's not how the software works).

[-] kogasa@programming.dev 1 points 1 year ago

No, you're wrong. All interesting behavior of ML models is emergent. It is learned, not programmed. The fact that it can perform what we consider an abstract task with success clearly distinguishable from random chance is irrefutable proof that some model of the task has been learned.

[-] Norgur@kbin.social 4 points 1 year ago

No one said anyhting about "learned" vs "programmed". Literally no one.

[-] kogasa@programming.dev 3 points 1 year ago

OP is saying it's impossible for a LLM to have "figured out" how something it works, and that if it understood anything it would be able to perform related tasks perfectly reliably. They didn't use the words, but that's what they meant. Sorry for your reading comprehension.

[-] Norgur@kbin.social 1 points 1 year ago

"op" you are referring to is... well... myself, Since you didn't comprehend that from the posts above, my reading comprehension might not be the issue here. \

But in all seriousness: I think this is an issue with concepts. No one is saying that LLMs can't "learn" that would be stupid. But the discussion is not "is everything programmed into the LLM or does it recombine stuff". You seem to reason that when someone says the LLM can't "understand", that person means "the LLM can't learn", but "learning" and "understanding" are not the same at all. The question is not if LLMs can learn, It's wether it can grasp concepts from the content of the words it absorbs as it it's learning data. If it would grasp concepts (like rules in algebra), it could reproduce them everytime it gets confronted with a similar problem. The fact that it can't do that shows that the only thing it does is chain words together by stochastic calculation. Really sophisticated stachastic calculation with lots of possible outcomes, but still.

[-] kogasa@programming.dev 2 points 1 year ago

“op” you are referring to is… well… myself, Since you didn’t comprehend that from the posts above, my reading comprehension might not be the issue here.

I don't care. It doesn't matter, so I didn't check. Your reading comprehension is still, in fact, the issue, since you didn't understand that the "learned" vs "programmed" distinction I had referred to is completely relevant to your post.

It’s wether it can grasp concepts from the content of the words it absorbs as it it’s learning data.

That's what learning is. The fact that it can construct syntactically and semantically correct, relevant responses in perfect English means that it has a highly developed inner model of many things we would consider to be abstract concepts (like the syntax of the English language).

If it would grasp concepts (like rules in algebra), it could reproduce them everytime it gets confronted with a similar problem

This is wrong. It is obvious and irrefutable that it models sophisticated approximations of abstract concepts. Humans are literally no different. Humans who consider themselves to understand a concept can obviously misunderstand some aspect of the concept in some contexts. The fact that these models are not as robust as that of a human's doesn't mean what you're saying it means.

the only thing it does is chain words together by stochastic calculation.

This is a meaningless point, you're thinking at the wrong level of abstraction. This argument is equivalent to "a computer cannot convey meaningful information to a human because it simply activates and deactivates bits according to simple rules." Your statement about an implementation detail says literally nothing about the emergent behavior we're talking about.

load more comments (18 replies)
[-] coolin@beehaw.org 3 points 1 year ago

I think this is downplaying what LLMs do. Yeah, they are not the best at doing things in general, but the fact that they were able to learn the structure and semantic context of language is quite impressive, even if it doesn't know what the words converted into tokens actually mean. I suspect that we will be able to use LLMs as one part of a full digital "brain", with some model similar to our own prefrontal cortex calling the LLM (and other things like vision model, sound model, etc.) and using its output to reason about a certain task and take an action. That's where I think the hype will be validated, is when you put all these parts we've been working on together and Frankenstein a new and actually intelligent system.

[-] Lucidlethargy@sh.itjust.works 6 points 1 year ago

Here, here. We need legislation to limit this, and we need it YESTERDAY.

Someone make an AI that replaces CEO's. Seriously, I'm not kidding. This is the answer.

[-] zoe@lemm.ee 1 points 1 year ago

yea, more like: ceos and white collar hurt consumers and workers. those jobs need to be eliminated and corps need to be heavily taxed so that universal basic income becomes ubiquitous. idk if any of this makes sense but i think this how things should be going

[-] mild_deviation@programming.dev 1 points 1 year ago

Stopping math is never a good idea. By limiting your own constituents, you set their progress back from what other governments' constituents can achieve.

Also, effectively replacing a CEO requires AGI level capabilities. We're closer to that than ever before, but LLMs in their current state aren't it.

[-] uriel238@lemmy.blahaj.zone 2 points 1 year ago* (last edited 1 year ago)

I'm reminded of a phenomenon in the 70s and 80s the computer is never wrong in which pricing mistakes and bank errors were expected to be impossible since there was a computer involved.

As an aside, I wonder if this is in any way related to the rush of patents in the 90s and aughts, for things humans obviously do, but on a computer or on the web like transferring money or making transactions. We still have lawsuits like that.

Also related, the predictive policing software that some US counties bought, unvetted, and is used to justify longer sentences for poor and nonwhite convicts so that no judge has to attach his name to bigoted rulings.

We humans seem to imagine that since there's a magic box involved in the computation of our answers that the answer is automatically more precise. Perhaps it's related to the notion that were considering more factors, but that only works if we've properly measured those factors and applied them appropriately to the model. Otherwise, as the saying goes (also from early computing) Garbage in; garbage out.

[-] ram@feddit.nl 2 points 1 year ago

Let's see...

They may create text which appears to human eyes like the result of thinking, reasoning, or understanding, but it is in fact anything but.

For generation of fictional text and images that's fine.

There is a pack mentality in rushing to invest in these tools, while overlooking the fact that they threaten workers

Like any other case of automation in the history of society.

[...] and impact consumers by creating lesser quality products

That sounds very subjective.

and allowing more erroneous outputs.

Large language models should not be used as a source of facts, that's why they all warn you about their limitations. LLMs are tools and should be used properly. A blow torch can get your balls burnt if used improperly.

[-] rockSlayer@lemmy.world 1 points 1 year ago* (last edited 1 year ago)

At least people are coming around to why it's called AI. Artificial Intelligence is called that because it's a facsimile of intelligence. It acts intelligent, but has no intellect. It's an algorithm, usually one designed in a black box so no one can analyze exactly how the output occurred

[-] FaceDeer@kbin.social 7 points 1 year ago

The human brain is itself still largely a black box as far as our reasoning capabilities are concerned.

[-] rockSlayer@lemmy.world -2 points 1 year ago

We don't need to develop tech that can't be analyzed directly. AI can and has been developed in a way that can be easily analyzed, like why an output was given.

[-] FaceDeer@kbin.social 2 points 1 year ago

We've been trying to do that approach for decades and progress has been slow and disappointing.

When we finally decided "screw it, just build a giant black box and throw terabytes of text at it to see what happens" we got GPT3 and now the world is about to be revolutionized.

[-] rockSlayer@lemmy.world 1 points 1 year ago* (last edited 1 year ago)

The black box isn't being done because it's a new idea, it's actually the other way around. The newer idea is actually the method for easier analysis. There's a few reasons that they aren't doing that though.

  1. It's a newer idea, not everything has been studied so methods will be experimental.
  2. It's in the company's interest to make the AI harder to analyze, because they don't want open the door on a better algorithm from a different company/government/group.
  3. It's cheaper up front to build a black box and then do statistical analysis the hard and expensive way. Companies would much rather spend money doing things the wrong way instead of saving money long term doing things the right way.
[-] FaceDeer@kbin.social 1 points 1 year ago* (last edited 1 year ago)

If doing it the "wrong way" is cheap and works well, then perhaps it's not the "wrong way."

There are many companies (and researchers and hobbyists now) who are doing this stuff other than OpenAI, at this point. They just broke the ice and showed what was possible.

[-] rockSlayer@lemmy.world 1 points 1 year ago

I just explained that it's not cheap. It costs far more to buy a cheap car and do constant maintenance than it is to buy the mid tier car without much maintenance. That's what's happening with AI right now, we're buying the cheap car and paying for it in labor and development costs. I'm saying that the right way is to buy the more expensive one, which will be cheaper in the long run.

[-] kogasa@programming.dev 0 points 1 year ago

There is no agent on the planet who is intentionally choosing to make their models harder to analyze. This is a ridiculous idea that you could only believe if you didn't understand where the complexity comes from in the first place. Creating ML models that can be efficiently and effectively trained and interpreted is an extremely hard and unsolved problem, and whomever could solve it would be rolling in cash.

[-] kitonthenet@kbin.social 0 points 1 year ago

Start revolutionizing, we’ve been waiting for months now…

[-] FaceDeer@kbin.social 3 points 1 year ago
[-] kitonthenet@kbin.social -2 points 1 year ago

If it’s supposed to be the labor extinguisher of the future, yes I expect something in the order of months

[-] FaceDeer@kbin.social 4 points 1 year ago

Your expectations are unrealistic. I am a programmer and I find tools like ChatGPT and copilot to be fantastic, but the company I work for has banned use of them until the legal department has figured out what the heck (and they won't figure out what the heck until the judicial system figures out what the heck, and the legislative layer above that). It takes time for these sorts of massive shifts in well-established systems to happen.

[-] kitonthenet@kbin.social 0 points 1 year ago

I am too and it can write boilerplate. It can’t do anything at a systems level, and I can’t even trust it to write something that can handle edge cases. I still have to do all the real work, it just writes the boilerplate, which is something I almost never do anyway. The legal side of it is almost exclusively IP rights, and I can’t risk putting GPL3 code in my project, and I certainly can’t risk putting IP in that it will regurgitate somewhere else

[-] thinkfan@lemmy.ml 7 points 1 year ago

Isn't it called AI because marketing people don't understand the difference?

[-] FatTony@lemmy.world 1 points 1 year ago

We should call it: "Algorithmic Intelligence" or A.I. for short.

[-] lemann@lemmy.one 1 points 1 year ago

How about Algorithmic Sentence Shaper?

[-] kogasa@programming.dev 0 points 1 year ago

What do you think "it's an algorithm" is supposed to imply? Can nothing deterministic be considered intelligent?

Also, "designed in a black box" is misleading. It's opaque because it's emergent behavior, not because it was obfuscated or designed in secrecy or something. The algorithm itself is simple. All the interesting data is encoded in the billions to trillions of input parameters. These parameters aren't designed at all, they are learned.

[-] lynny@lemmy.world -1 points 1 year ago

You can't regulate automation to stop it. You need to learn to adapt just like everyone else who has been automated out of a job.

[-] kitonthenet@kbin.social 0 points 1 year ago

I bet the prison cells and the fines feel all the same, AI or no

load more comments
view more: next ›
this post was submitted on 04 Aug 2023
108 points (88.6% liked)

Technology

34805 readers
211 users here now

This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.


Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.


Rules:

1: All Lemmy rules apply

2: Do not post low effort posts

3: NEVER post naziped*gore stuff

4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.

5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)

6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist

7: crypto related posts, unless essential, are disallowed

founded 5 years ago
MODERATORS