68

Abstract

Existing personalization generation methods, such as Textual Inversion, DreamBooth, and LoRA, have made significant progress in custom image creation. However, these works require expensive computational resources and time for fine-tuning, and require multiple reference images, which limits their application in the real world. InstantID addresses these limitations by leveraging a plug-and-play module, enabling it to adeptly handle image personalization in any style using only one face image while maintaining high fidelity. To preserve the face identity, we introduce a novel face encoder to retain the intricate details of the reference image. InstantID's performance and efficiency in diverse scenarios show its potentiality in various real-world applications. Our work is compatible with common pretrained text-to-image diffusion models such as SD1.5 and SDXL as a plugin. Code and pre-trained checkpoints will be made public soon!

Paper: https://instantid.github.io/instantid.github.io

Code: https://github.com/InstantID/InstantID (coming soon)

Project Page: https://instantid.github.io/

Stylized Synthesis

Novel View Synthesis

Stacking Multiple References

Multi-ID Synthesis in Single Style

you are viewing a single comment's thread
view the rest of the comments
this post was submitted on 15 Dec 2023
68 points (97.2% liked)

Stable Diffusion

4308 readers
7 users here now

Discuss matters related to our favourite AI Art generation technology

Also see

Other communities

founded 1 year ago
MODERATORS