25
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
this post was submitted on 31 Jan 2024
25 points (87.9% liked)
Asklemmy
43908 readers
1030 users here now
A loosely moderated place to ask open-ended questions
Search asklemmy ๐
If your post meets the following criteria, it's welcome here!
- Open-ended question
- Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
- Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
- Not ad nauseam inducing: please make sure it is a question that would be new to most members
- An actual topic of discussion
Looking for support?
Looking for a community?
- Lemmyverse: community search
- sub.rehab: maps old subreddits to fediverse options, marks official as such
- !lemmy411@lemmy.ca: a community for finding communities
~Icon~ ~by~ ~@Double_A@discuss.tchncs.de~
founded 5 years ago
MODERATORS
I would like to add something to think about current LLM's have about as much in common with AGI's as a cold reader to a real psychic (if that was a real thing) . you have to remember that current LLM's don't communicate with you, they predict what you want to hear.
They don't disagree with you based on their trained data. they will make up stuff becase based on your input they predict that is what you want to hear. if you tell it something false they will never tell you are wrong without some override created by a human. unless they predict that you want to be told that you are wrong based on your prompt.
LLM's are powerful and useful but the intelligence is an illusion. The way current LLMs are built I don't see them evolving into AGI's without some fundamental changes to how LLM work. Throwing more data will just make the illusion beter.
thank you for joining my Ted Talk ๐
That is not entirely true. The larger models do have a deeper understanding and can in fact correct you in many instances. You do need to be quite familiar with the model and the AI alignment problem to get a feel for what a model truly understands in detail. They can't correct compound problems very well. Like in code, if there are two functions, and you're debugging an error. If the second function fails due to an issue in the first function, the LLM may struggle to connect the issues, but if you ask the LLM why the first function fails after calling it while passing the same parameters it failed with in the second function, it will likely debug the problem successfully.
The largest problem you're likely encountering if you experience a very limited knowledge or understanding of complexity, is that the underlying Assistant (lowest level LLM entity) is creating characters and limiting their knowledge or complexity because it has decided what the entity should know or be capable of handling. All entities are subject to this kind of limitation, even the Assistant is just a roleplaying character under the surface and can be limited under some circumstances, especially if it goes off the rails hallucinating in a subtle way. Smaller models like anything under a 20B hallucinate a whole lot and often hit these kinds of problem states.
A few days ago I had a brain fart and started asking some questions about a physiologist related to my disability and spinal problems. A Mixtral 8ร7B model immediately and seamlessly answered my question while also noting my error by defining what a physiatrist and a physiologist are by definition and then proceeded to answer my questions. That is the most fluid correction I have ever encountered and that was from a quantized GGUF roleplaying LLM running offline on my own hardware.