21
submitted 11 months ago* (last edited 11 months ago) by Ategon@programming.dev to c/advent_of_code@programming.dev

Day 9: Mirage Maintenance

Megathread guidelines

  • Keep top level comments as only solutions, if you want to say something other than a solution put it in a new post. (replies to comments can be whatever)
  • Code block support is not fully rolled out yet but likely will be in the middle of the event. Try to share solutions as both code blocks and using something such as https://topaz.github.io/paste/ , pastebin, or github (code blocks to future proof it for when 0.19 comes out and since code blocks currently function in some apps and some instances as well if they are running a 0.19 beta)

FAQ


🔒 Thread is locked until there's at least 100 2 star entries on the global leaderboard

🔓 Unlocked after 5 mins

top 27 comments
sorted by: hot top controversial new old
[-] corristo@programming.dev 6 points 11 months ago

APL

I finally managed to make use of ⍣ :D

input←⊃⎕NGET'inputs/day9.txt'1
p←{⍎('¯'@((⍸'-'∘=)⍵))⍵}¨input
f←({⍵⍪⊂2-⍨/⊃¯1↑⍵}⍣{∧/0=⊃¯1↑⍺})
⎕←+/{+/⊢/¨f⊂⍵}¨p ⍝ part 1
⎕←+/{-/⊣/¨f⊂⍵}¨p ⍝ part 2
[-] abclop99@beehaw.org 2 points 11 months ago
[-] itslilith@lemmy.blahaj.zone 6 points 11 months ago* (last edited 11 months ago)

(Cursed) Python

I solved the actual thing recursively in Rust, but I decided that wasn't cursed enough, so I present: Polynomial fitting!

import numpy.polynomial.polynomial as pol

with open("input.txt") as f:
  lines = list(map(lambda l: list(map(int, l.split(" "))), f.read().split("\n")))

lo, hi = 0, 0

for line in lines:
  for i in range(len(line)):
    poly, (r, *_) = pol.Polynomial.fit(range(len(line)), line, full=True, deg=i)
    if r < 0.0000000001:
      break

  lo += int(round(poly(-1)))
  hi += int(round(poly(len(line))))

print(f"Part 1: {hi}")
print(f"Part 2: {lo}")
[-] cacheson@kbin.social 6 points 11 months ago

Nim

Pretty easy one today. Made a Pyramid type to hold the values and their layers of diffs, and an extend function to predict the next value. For part 2 I just had to make an extendLeft version of it that inserts and subtracts instead of appending and adding.

[-] CommunityLinkFixer 2 points 11 months ago

Hi there! Looks like you linked to a Lemmy community using a URL instead of its name, which doesn't work well for people on different instances. Try fixing it like this: !nim@programming.dev

[-] janAkali@lemmy.one 6 points 11 months ago* (last edited 11 months ago)

Nim

Part 1:
The extrapolated value to the right is just the sum of all last values in the diff pyramid. 45 + 15 + 6 + 2 + 0 = 68
Part 2:
The extrapolated value to the left is just a right-folded difference (right-associated subtraction) between all first values in the pyramid. e.g. 10 - (3 - (0 - (2 - 0))) = 5

So, extending the pyramid is totally unneccessary.

Total runtime: 0.9 ms
Puzzle rating: Easy, but interesting 6.5/10
Full Code: day_09/solution.nim
Snippet:

proc solve(lines: seq[string]): AOCSolution[int] =
  for line in lines:
    var current = line.splitWhitespace().mapIt(it.parseInt())
    var firstValues: seq[int]

    while not current.allIt(it == 0):
      firstValues.add current[0]
      block p1:
        result.part1 += current[^1]

      var nextIter = newSeq[int](current.high)
      for i, v in current[1..^1]:
        nextIter[i] = v - current[i]
      current = nextIter

    block p2:
      result.part2 += firstValues.foldr(a-b)
[-] Sekoia@lemmy.blahaj.zone 4 points 11 months ago* (last edited 11 months ago)
[-] snowe@programming.dev 2 points 11 months ago

how in the world are you getting top 1k with rust? sheesh!

[-] morrowind@lemmy.ml 3 points 11 months ago

I guess I'll have to take rustaceans who claim they're more productive in rust than python seriously now

[-] Sekoia@lemmy.blahaj.zone 3 points 11 months ago
  1. Setting up boilerplate beforehand, I only need to fill in the functions (and the return types)
  2. Really good parsing library (aoc_parse). Today my entire parsing code was parser!(lines(repeat_sep(i64, " ")))
  3. Iterators! Actually really ideal for AoC, where pipelines of data are really common. Today both the main part (sum of lines) and inner part (getting a vec of differences) can be done pretty easily through iterators

Today was pretty ideal for my setup. In general I think Rust is really good for later days, because the safety and explicitness make small mistakes rarer (like if you get an element from a HashMap that doesn't exist, you don't get a None later down the road (unless you want it, in which case it's explicit), you get an exception where it happened.

I just really like Rust :3

[-] Gobbel2000@feddit.de 4 points 11 months ago

Rust

Discrete derivatives!

[-] snowe@programming.dev 4 points 11 months ago* (last edited 11 months ago)

Ruby

!ruby@programming.dev [LANGUAGE: Ruby]

I found today really easy thankfully. Hardest part was remembering the language features haha

https://github.com/snowe2010/advent-of-code/blob/master/ruby_aoc/2023/day09/day09.rb

edit: code golfing this one was easy too! man this day really worked out huh

    def get_subsequent_reading(reading)
      puts "passed in readings #{reading}"
      if reading.all?(0)
        reading << 0
      else
        readings = reading.each_cons(2).map do |a, b|
          b - a
        end
        sub_reading = get_subsequent_reading(readings)
        reading << (reading[-1] + sub_reading[-1])
        puts "current reading #{reading}"
        reading
      end
    end
    
    execute(1) do |lines|
      lines.map do |reading|
        get_subsequent_reading(reading.split.map(&:to_i))
      end.map {|arr| arr[-1]}.sum
    end
    
    
    def get_preceeding_readings(reading)
      puts "passed in readings #{reading}"
      if reading.all?(0)
        reading.unshift(0)
      else
        readings = reading.each_cons(2).map do |a, b|
          b - a
        end
        sub_reading = get_preceeding_readings(readings)
        reading.unshift(reading[0] - sub_reading[0])
        puts "current reading #{readings} #{sub_reading}"
        reading
      end
    end
    
    
    execute(2, test_only: false, test_file_suffix: '') do |lines|
      lines.map do |reading|
        get_preceeding_readings(reading.split.map(&:to_i))
      end.map {|arr| arr[0]}.sum
    end

code golf

  a=->r{r.unshift(r.all?(0)?0:(r[0]-a[r.each_cons(2).map{_2-_1}][0]))}
  l.map{a[_1.split.map(&:to_i)]}.map{_1[0]}.sum
[-] morrowind@lemmy.ml 4 points 11 months ago

Crystal

recursion is awesome! (sometimes)

input = File.read("input.txt")

seqs = input.lines.map &.split.map &.to_i

sums = seqs.reduce({0, 0}) do |prev, sequence|
	di = diff(sequence)
	{prev[0] + sequence[0] - di[0], prev[1] + di[1] + sequence[-1]}
end
puts sums


def diff(sequence)
	new = Array.new(sequence.size-1) {|i| sequence[i+1] - sequence[i]}

	return {0, 0} unless new.any?(&.!= 0)

	di = diff(new)
	{new[0] - di[0], di[1] + new[-1]}
end
[-] hades@lemm.ee 3 points 11 months ago* (last edited 3 months ago)

Python

from .solver import Solver

class Day09(Solver):

  def __init__(self):
    super().__init__(9)
    self.numbers: list[list[int]] = []

  def presolve(self, input: str):
    lines = input.rstrip().split('\n')
    self.numbers = [[int(n) for n in line.split(' ')] for line in lines]
    for line in self.numbers:
      stack = [line]
      while not all(x == 0 for x in stack[-1]):
        diff = [stack[-1][i+1] - stack[-1][i] for i in range(len(stack[-1]) - 1)]
        stack.append(diff)
      stack.reverse()
      stack[0].append(0)
      stack[0].insert(0, 0)
      for i in range(1, len(stack)):
        stack[i].append(stack[i-1][-1] + stack[i][-1])
        stack[i].insert(0, stack[i][0] - stack[i-1][0])

  def solve_first_star(self) -> int:
    return sum(line[-1] for line in self.numbers)

  def solve_second_star(self) -> int:
    return sum(line[0] for line in self.numbers)
[-] __init__@programming.dev 3 points 11 months ago

Python

Easy one today

code

import pathlib

base_dir = pathlib.Path(__file__).parent
filename = base_dir / "day9_input.txt"

with open(base_dir / filename) as f:
    lines = f.read().splitlines()

histories = [[int(n) for n in line.split()] for line in lines]

answer_p1 = 0
answer_p2 = 0

for history in histories:
    deltas: list[list[int]] = []
    last_line: list[int] = history

    while any(last_line):
        deltas.append(last_line)
        last_line = [last_line[i] - last_line[i - 1] for i in range(1, len(last_line))]

    first_value = 0
    last_value = 0
    for delta_list in reversed(deltas):
        last_value = delta_list[-1] + last_value
        first_value = delta_list[0] - first_value

    answer_p1 += last_value
    answer_p2 += first_value

print(f"{answer_p1=}")
print(f"{answer_p2=}")

[-] mykl@lemmy.world 3 points 11 months ago* (last edited 11 months ago)

Dart

I was getting a bad feeling when it explained in such detail how to solve part 1 that part 2 was going to be some sort of nightmare of traversing all those generated numbers in some complex fashion, but this has got to be one of the shortest solutions I've ever written for an AoC challenge.

int nextTerm(Iterable ns) {
  var diffs = ns.window(2).map((e) => e.last - e.first);
  return ns.last +
      ((diffs.toSet().length == 1) ? diffs.first : nextTerm(diffs.toList()));
}

List> parse(List lines) => [
      for (var l in lines) [for (var n in l.split(' ')) int.parse(n)]
    ];

part1(List lines) => parse(lines).map(nextTerm).sum;
part2(List lines) => parse(lines).map((e) => nextTerm(e.reversed)).sum;
[-] cvttsd2si@programming.dev 3 points 11 months ago* (last edited 11 months ago)

Scala3

def diffs(a: Seq[Long]): List[Long] =
    a.drop(1).zip(a).map(_ - _).toList

def predictNext(a: Seq[Long], combine: (Seq[Long], Long) => Long): Long =
    if a.forall(_ == 0) then 0 else combine(a, predictNext(diffs(a), combine))

def predictAllNexts(a: List[String], combine: (Seq[Long], Long) => Long): Long = 
    a.map(l => predictNext(l.split(raw"\s+").map(_.toLong), combine)).sum

def task1(a: List[String]): Long = predictAllNexts(a, _.last + _)
def task2(a: List[String]): Long = predictAllNexts(a, _.head - _)
[-] mykl@lemmy.world 3 points 11 months ago* (last edited 11 months ago)

I even have time to knock out a quick Uiua solution before going out today, using experimental recursion support. Bleeding edge code:

# Experimental!
{"0 3 6 9 12 15"
 "1 3 6 10 15 21"
 "10 13 16 21 30 45"}
StoInt ← /(+×10)▽×⊃(≥0)(≤9).-@0
NextTerm ← ↬(
  ↘1-↻¯1..      # rot by one and take diffs
  (|1 ↫|⊢)=1⧻⊝. # if they're all equal grab else recurse
  +⊙(⊢↙¯1)      # add to last value of input
)
≡(⊜StoInt≠@\s.⊔) # parse
⊃(/+≡NextTerm)(/+≡(NextTerm ⇌))
[-] pnutzh4x0r@lemmy.ndlug.org 3 points 11 months ago

Language: Python

Part 1

Pretty straightforward. Took advantage of itertools.pairwise.

def predict(history: list[int]) -> int:
    sequences = [history]
    while len(set(sequences[-1])) > 1:
        sequences.append([b - a for a, b in itertools.pairwise(sequences[-1])])
    return sum(sequence[-1] for sequence in sequences)

def main(stream=sys.stdin) -> None:
    histories   = [list(map(int, line.split())) for line in stream]
    predictions = [predict(history) for history in histories]
    print(sum(predictions))

Part 2

Only thing that changed from the first part was that I used functools.reduce to take the differences of the first elements of the generated sequences (rather than the sum of the last elements for Part 1).

def predict(history: list[int]) -> int:
    sequences = [history]
    while len(set(sequences[-1])) > 1:
        sequences.append([b - a for a, b in itertools.pairwise(sequences[-1])])
    return functools.reduce(
        lambda a, b: b - a, [sequence[0] for sequence in reversed(sequences)]
    )

def main(stream=sys.stdin) -> None:
    histories   = [list(map(int, line.split())) for line in stream]
    predictions = [predict(history) for history in histories]
    print(sum(predictions))

GitHub Repo

[-] vole@lemmy.world 2 points 11 months ago* (last edited 11 months ago)

Raku

First time using Grammar Actions Object to make parsing a little cleaner. I thought about not keeping track of the left and right values (and I originally didn't for part 1), but I think keeping track allows for an easier to understand solution.

View code on github

edit: although I don't know why @values.all != 0 evaluates to true why any value is not zero. I thought that @values.any != 0 would do that, but it seems that their behavior is flipped from my expectations.

edit2: Oh, I think I understand now. != is a shortcut for !==, and !== is actually the equality operator that is then negated. You can negate most relational operators in Raku by prefixing them with !. So the junction is actually binding to the == equality operator and not the !== inequality operator. Therefore @values.all != 0 becomes !(@values.all == 0). I'm not sure why they would choose this order of operations, though.

edit3: Ah, it's in the documentation, so it's not even an oversight. https://github.com/rakudo/rakudo/issues/3748

Code (probably still doesn't render correctly)

use v6;

sub MAIN($input) {
    my $file = open $input;

    grammar Oasis {
        token TOP { +%"\n" "\n"* }
        token history { +%\h+ }
        token val { '-'? \d+ }
    }

    class OasisActions {
        method TOP ($/) { make $».made }
        method history ($/) { make $».made }
        method val ($/) { make $/.Int }
    }

    my $oasis = Oasis.parse($file.slurp, actions => OasisActions.new);
    my @histories = $oasis.made;
    my $part-one-solution;
    my $part-two-solution;
    sub revdiff { $^b - $^a }
    for @histories -> @history {
        my @values = @history;
        my @rightmosts = [@values.tail];
        my @leftmosts = [@values.head];
        while @values.all != 0 {
            @values = @values.tail(*-1) Z- @values.head(*-1);
            @rightmosts.push(@values.tail);
            @leftmosts.push(@values.head);
        }
        $part-one-solution += [+] @rightmosts;
        $part-two-solution += [[&revdiff]] @leftmosts.reverse;
    }
    say "part 1: $part-one-solution";
    say "part 2: $part-two-solution";
}

[-] SteveDinn@lemmy.ca 2 points 11 months ago

C#

Used recursion to determine the differences for part 1 and then extracted the variations in processing from predicting the end vs. the beginning of the history and passed them in as Func variables to the recursive method.

Day 9

[-] SteveDinn@lemmy.ca 2 points 11 months ago* (last edited 11 months ago)

Snippet:

        static void Part1(string data)
        {
            var result = ParseInput(data)
                .Select(history => ProcessHistory(history, g => g.Length - 1, (a, b) => a + b))
                .Sum();

            Console.WriteLine(result);
        }

        static void Part2(string data)
        {
            var result = ParseInput(data)
                .Select(history => ProcessHistory(history, g => 0, (a, b) => a - b))
                .Sum();

            Console.WriteLine(result);
        }

        static int ProcessHistory(
            int[] history,
            Func guessIndex,
            Func collateGuess)
        {
            bool allZeros = true;

            var diffs = new int[history.Length - 1];
            for (int i = 0; i < diffs.Length; i++)
            {
                var diff = history[i + 1] - history[i];
                diffs[i] = diff;
                allZeros = allZeros && (diff == 0);
            }

            var guess = history[guessIndex(history)];

            if (!allZeros)
            {
                guess = collateGuess(
                    guess,
                    ProcessHistory(diffs, guessIndex, collateGuess));
            }

            return guess;
        }
[-] JRaccoon@discuss.tchncs.de 2 points 11 months ago* (last edited 11 months ago)

TypeScript

GitHub link

It's nice to have a quick easy one for a change

Code

import fs from "fs";

const rows = fs.readFileSync("./09/input.txt", "utf-8")
    .split(/[\r\n]+/)
    .map(row => row.trim())
    .filter(Boolean)
    .map(row => row.split(/\s+/).map(number => parseInt(number)));

console.info("Part 1: " + solve(structuredClone(rows)));
console.info("Part 2: " + solve(structuredClone(rows), true));

function solve(rows: number[][], part2 = false): number {
    let total = 0;
    for (const row of rows) {
        const sequences: number[][] = [row];
        while (sequences[sequences.length - 1].some(number => number !== 0)) { // Loop until all are zero
            const lastSequence = sequences[sequences.length - 1];
            const newSequence: number[] = [];
            for (let i = 0; i < lastSequence.length; i++) {
                if (lastSequence[i + 1] !== undefined) {
                    newSequence.push(lastSequence[i + 1] - lastSequence[i]);
                }
            }
            sequences.push(newSequence);
        }

        // For part two just reverse the sequences
        if (part2) {
            sequences.forEach(sequence => sequence.reverse());
        }

        // Add the first zero manually and loop the rest
        sequences[sequences.length - 1].push(0);
        for (let i = sequences.length - 2; i >= 0; i--) {
            sequences[i].push(part2
                ? sequences[i][sequences[i].length - 1] - sequences[i + 1][sequences[i + 1].length - 1]
                : sequences[i][sequences[i].length - 1] + sequences[i + 1][sequences[i + 1].length - 1]
            );
        }
    
        total += sequences[0].reverse()[0];
    }

    return total;
}

[-] purplemonkeymad@programming.dev 2 points 11 months ago

Using a class here actually made part 2 super simple, just copy and paste a function. Initially I was a bit concerned about what part 2 would be, but looking at the lengths of the input data, there looked to be a resonable limit to how many additional rows there could be.

pythonimport re import math import argparse import itertools

#https://stackoverflow.com/a/1012089
def iter_item_and_next(iterable):
    items, nexts = itertools.tee(iterable, 2)
    nexts = itertools.chain(itertools.islice(nexts, 1, None), [None])
    return zip(items, nexts)

class Sequence:
    def __init__(self,sequence:list) -> None:
        self.list = sequence
        if all([x == sequence[0] for x in sequence]):
            self.child:Sequence = ZeroSequence(len(sequence)-1)
            return
        
        child_sequence = list()
        for cur,next in iter_item_and_next(sequence):
            if next == None:
                continue
            child_sequence.append(next - cur)

        if len(child_sequence) > 1:
            self.child:Sequence = Sequence(child_sequence)
            return
        
        # can't do diff on single item, use zero list
        self.child:Sequence = ZeroSequence(1)

    def __repr__(self) -> str:
        return f"Sequence([{self.list}], Child:{self.child})"

    def getNext(self) -> int:
        if self.child == None:
            new = self.list[-1]
        else: 
            new = self.list[-1] + self.child.getNext()

        self.list.append(new)
        return new
    
    def getPrevious(self) -> int:
        if self.child == None:
            new = self.list[0]
        else: 
            new = self.list[0] - self.child.getPrevious()

        self.list.insert(0,new)
        return new

class ZeroSequence(Sequence):
    def __init__(self,count) -> None:
        self.list = [0]*count
        self.child = None

    def __repr__(self) -> str:
        return f"ZeroSequence(length={len(self.list)})"

    def getNext(self) -> int:
        self.list.append(0)
        return 0
    
    def getPrevious(self) -> int:
        self.list.append(0)
        return 0

def parse_line(string:str) -> list:
    return [int(x) for x in string.split(' ')]

def main(line_list):
    data = [Sequence(parse_line(x)) for x in line_list]
    print(data)

    # part 1
    total = 0
    for d in data:
        total += d.getNext()
    print("Part 1 After:")
    print(data)
    print(f"part 1 total: {total}")

    # part 2
    total = 0
    for d in data:
        total += d.getPrevious()
    print("Part 2 After:")
    print(data)
    print(f"part 2 total: {total}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="day 1 solver")
    parser.add_argument("-input",type=str)
    parser.add_argument("-part",type=int)
    args = parser.parse_args()
    filename = args.input
    if filename == None:
        parser.print_help()
        exit(1)
    file = open(filename,'r')
    main([line.rstrip('\n') for line in file.readlines()])
    file.close()

[-] Massahud@programming.dev 2 points 11 months ago

Language: Python

Github

[-] soulsource@discuss.tchncs.de 2 points 11 months ago

[Language: Lean4]

This one was very easy, almost trivial. Lean4 did demand a proof of termination though, and I'm still not very good at writing proofs...

I'm also pretty happy that this time I was able to re-use most of part 1 for part 2, and part 2 being a one-liner therefore.

As always, here is only the file with the actual solution, some helper functions are implemented in different files - check my github for the whole project.

Solution


private def parseLine (line : String) : Except String $ List Int :=
  line.split Char.isWhitespace
  |> List.map String.trim
  |> List.filter String.notEmpty
  |> List.mapM String.toInt?
  |> Option.toExcept s!"Failed to parse numbers in line \"{line}\""

def parse (input : String) : Except String $ List $ List Int :=
  let lines := input.splitOn "\n" |> List.map String.trim |> List.filter String.notEmpty
  lines.mapM parseLine

-------------------------------------------------------------------------------------------

private def differences : List Int → List Int
| [] => []
| _ :: [] => []
| a :: b :: as => (a - b) :: differences (b::as)

private theorem differences_length_independent_arg (a b : Int) (bs : List Int) : (differences (a :: bs)).length = (differences (b :: bs)).length := by
  induction bs <;> simp[differences]

-- BEWARE: Extrapolate needs the input reversed.
private def extrapolate : List Int → Int
| [] => 0
| a :: as =>
  if a == 0 && as.all (· == 0) then
    0
  else
    have : (differences (a :: as)).length < as.length + 1 := by
      simp_arith[differences]
      induction (as) <;> simp_arith[differences]
      case cons b bs hb => rw[←differences_length_independent_arg]
                           assumption
    a + extrapolate (differences (a :: as))
termination_by extrapolate a => a.length

def part1 : List (List Int) → Int :=
  List.foldl Int.add 0 ∘ List.map (extrapolate ∘ List.reverse)

-------------------------------------------------------------------------------------------

def part2 : List (List Int) → Int :=
  List.foldl Int.add 0 ∘ List.map extrapolate

[-] capitalpb@programming.dev 1 points 11 months ago

A pretty simple one today, but fun to do. I could probably clean up the parsing code (AKA my theme for this year), and create just one single vector instead of having the original history separated out from all of the sequences, but this is what made sense to me on my first pass so it's how I did it.

https://github.com/capitalpb/advent_of_code_2023/blob/main/src/solvers/day09.rs

pub struct Day09;

fn get_history(input: &str) -> Vec {
    input
        .split(' ')
        .filter_map(|num| num.parse::().ok())
        .collect::>()
}

fn get_sequences(history: &Vec) -> Vec> {
    let mut sequences = vec![get_steps(&history)];

    while !sequences.last().unwrap().iter().all_equal() {
        sequences.push(get_steps(sequences.last().unwrap()));
    }

    sequences
}

fn get_steps(sequence: &Vec) -> Vec {
    sequence
        .iter()
        .tuple_windows()
        .map(|(x, y)| y - x)
        .collect()
}

impl Solver for Day09 {
    fn star_one(&self, input: &str) -> String {
        input
            .lines()
            .map(|line| {
                let history = get_history(line);

                let add_value = get_sequences(&history)
                    .iter()
                    .rev()
                    .map(|seq| seq.last().unwrap().clone())
                    .reduce(|acc, x| acc + x)
                    .unwrap();

                history.last().unwrap() + add_value
            })
            .sum::()
            .to_string()
    }

    fn star_two(&self, input: &str) -> String {
        input
            .lines()
            .map(|line| {
                let history = get_history(line);

                let minus_value = get_sequences(&history)
                    .iter()
                    .rev()
                    .map(|seq| seq.first().unwrap().clone())
                    .reduce(|acc, x| x - acc)
                    .unwrap();

                history.first().unwrap() - minus_value
            })
            .sum::()
            .to_string()
    }
}
this post was submitted on 09 Dec 2023
21 points (95.7% liked)

Advent Of Code

736 readers
1 users here now

An unofficial home for the advent of code community on programming.dev!

Advent of Code is an annual Advent calendar of small programming puzzles for a variety of skill sets and skill levels that can be solved in any programming language you like.

AoC 2023

Solution Threads

M T W T F S S
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25

Rules/Guidelines

Relevant Communities

Relevant Links

Credits

Icon base by Lorc under CC BY 3.0 with modifications to add a gradient

console.log('Hello World')

founded 1 year ago
MODERATORS